

# GEO Progress Updates (Global Energy Optimization)

Project Lead: Jonathan Eastep, PhD & Principal Engineer <u>jonathan.m.eastep@intel.com</u>

May 12, 2016

# Recap of GEO Project Scope and Goals

- GEO is a runtime for energy optimization in HPC systems
  - Application-level: launches with and runs with the application
  - Global: coordinates DVFS / power alloc decisions across nodes
  - Open source: BSD 3-clause license
  - Scalable: tree-hierarchical control and telemetry aggregation
  - Extensible: plug-ins for extensions + out-of-the-box functionality

#### Goals:

- Report per-job (or per-application-phase) energy/perf profile info
- Provide out-of-the-box functionality to unlock substantially more performance in power-limited systems
- Provide open platform for research community to accelerate innovation in HPC system energy management

### Recap of Implementation Status (5 Dec 2015)

#### Reported initial public release of GEO on github

- Package Name: geopm (stands for GEO power management)
- Release goals:
  - Define GEO interfaces and publish user docs for community review
  - Nail down modular OO-design in C++11 (w/ C external interfaces)
  - Include solid autotools build system & gtest/gcov test infrastructure
  - Include support for basic static power management functionality
    - Example: Uniform Frequency Static mode
- Non-Goals:
  - Code / feature-completeness
    - No dynamic power management yet (runtime was still under construction)
    - No support for extensibility via plug-ins yet

### Status Update on Implementation (Current)

#### Completed a significant new geopm release

- Release goals:
  - Achieve functional correctness of runtime for dynamic power mgmt
  - Provide plug-in frameworks for extending GEO in two dimensions:
    - Add new energy management strategies
    - Add support for new target hardware platforms
  - Provide an out-of-the-box plug-in for a key US DOE use-case:
    - Goal: maximize application performance within a job power bound
    - Approach: dynamically reallocate power to speed up nodes on critical path
  - Provide developer documentation and additional user documentation
- Non-Goals:
  - Production quality test coverage (much testing included, more needed)
  - Benchmark and regression test infrastructure (work in progress)
  - Tuned-up power balancer plug-in (results not yet optimized)

### Status Update on Collaborations: Argonne

- Goal: develop GEO for deployment on Aurora in 2018
  - Note: earlier intercepts probable on other Phi or Xeon systems
- Scope:
  - Work with Argonne/Cray to integrate GEO into Aurora software stack
  - Nail down key use-cases for GEO & user incentives for running it
  - Explore power-aware scheduler functions in Cobalt Job Mgmt Suite

#### Status:

- [COMPLETE] Define GEO design and integration architecture
- [NEXT STEP] Bring up test cluster at Argonne for integration work
- [NEXT STEP] Demo GEO running on KNL cluster (proxy for Aurora)

### Status Update on Collaborations: LLNL

- Goal: work toward deploying GEO on LLNL production systems
- Scope:
  - Develop high-performance safe userspace interfaces to power/perf monitors and controls (build on msr-safe)
  - Study /enhance GEO scalability on LLNL catalyst test cluster
  - Explore integrating Conductor energy mgmt technology into GEO
- Status:
  - [COMPLETE] msr-safe enhancements for performance
  - [NEXT STEP] Work with LLNL and Cray and attempt to get msr-safe adopted in OpenHPC and SLES/RHEL Linux distros
  - [NEXT STEP] Begin GEO scaling work
  - [NEXT STEP] Begin exploring Conductor integration

### Status Update on Collaborations: Sandia

Goal: work toward compatibility between Sandia Power API and GEO
APIs and explore integration feasibility

#### Scope:

- Exchange feedback to influence future API versions, simplify wrapping
- Explore feasibility of having GEO provide some of the control and monitoring functionality specified in Sandia API

#### Status:

- [COMPLETE] GEO team to modify application API for simpler wrapping
- [COMPLETE] GEO team to suggest changes to Sandia application API for compatibility
- [NEXT STEP] Sandia working to incorporate feedback on application API into a future version of the spec
- [NEXT STEP] Exchange feedback on design of interfaces between Workload Managers and Job-Level Energy Managers like GEO

# **Project Information**

| Type                                | Info                                       |
|-------------------------------------|--------------------------------------------|
| Email contact                       | jonathan.m.eastep@intel.com                |
| Project page url                    | geopm.github.io/geopm                      |
| Project repo url                    | github.com/geopm                           |
| Release notes url                   | github.com/geopm/geopm/releases/tag/v0.1.0 |
| EE HPC WG Webinar on GEO hyperlinks | slides and audio                           |

# GEO Team Acknowledgements

#### GEO Core Team (Intel)

- Fede Ardanaz
- Chris Cantalupo
- Jonathan Eastep
- Stephanie Labasan
- Kelly Livingston
- Steve Sylvester
- Reza Zamani
- ... and hiring!

#### Collaborators (Intel)

- Tryggve Fossum
- Al Gara
- Richard Greco
- David Lombard
- Ram Nagappan
- Mike Patterson



# Backup Slides

# **GEO** Capabilities

- Comprehend and mitigate dynamic load imbalance by globally coordinating frequency and power allocations across nodes
- Leverage application-awareness and learning to recognize patterns in application (phases), then exploit patterns to optimize decisions
- React to phase changes at aggressive time scales (low milliseconds) and rapidly redistribute limited power to performance-critical resources
- Tackle the scale challenges prior techniques have swept under the rug to enable holistic joint optimization of power policy across the job

### Recap of GEO Integration Architecture



### GEO Hierarchical Architecture

GEO manages job to a power budget and globally coordinates frequency & power allocation decisions

Scaling challenge is addressed via treehierarchical design & hierarchical policy

- Each agent owns sub-problem: decide how to divide/balance power among children
- Power/perf telemetry is scalably aggregated so network traffic is minimal
- Tuning is globally optimized despite distributed tuning: achieved through Hierarchical-POMDP learning techniques

GEO tree runs in 1 reserved core per CN

- Leaf & non-leaf agents run in these cores
- Enables fast reaction times, deep analysis
- Overhead is negligible in manycore chips
- Designing for minimal memory footprint



CN ≡ Compute Node (in compute node racks)

# Zoom-In on Leaf Agent



# Auto-Tuner Prototype Results Summary

### Speedup from Auto-Tuner at ISO Power



Speedup derives from two factors: correcting load imbalance across nodes and node-local spatiotemporal energy scheduling optimizations exploiting phases

Bars represent average results over a range of assumptions about how much power the job is allocated and how much load imbalance is present

Experimental setup carefully emulates large-cluster load imbalance on a small cluster

Results collected while running on Xeon hardware (not simulation)